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1 Abstract

This paper is about the numerical simulation of nonlinear
analog circuits with ”switch” components, such as diodes.
A ”switch” component is an electrical device that may or
may not conduct, depending on the state of the circuit. The
problem with ”switch” components is that the topology of
the circuit is variable and so, apparently, it is not possible
to describe the system with a single differential equation
and solve it using standard numerical methods. This paper
shows how to choose an appropriate state variable and over-
come the above difficulties.

2 A test example

Let’s consider the following circuit.

Figure 1: Example circuit

If the voltage on the diodes is below their threshold,
no current is flowing through the diodes and so no current
is flowing into the resistor and the capacitor; the circuit is
open. When the voltage gets higher than the diode thresh-
old, the circuit becomes a standard RC filter. We have just
seen two different topologies that the same circuit can have,
depending on its state.

The couple of diodes has a memory-less nonlinear trans-
fer function, like the one in figure 1. Note that the cur-
rent circuit is only an example and so, instead of diodes, we
could have other switch components with a different trans-

fer function, like the grid of a triode. But the ideas we are
going to expose will remain the same.

id = f(vd)

Figure 2: Nonlinear transfer function

Let’s call id the current flowing into the diodes andvd

the voltage on the diode. A standard way to proceed into
the analysis of the circuit, is to take the currenti will be as
the state variable of the system. The equations of the system
will become:





e− iR− vc − vd = 0
vc(t) = 1

C

∫ t

0
i(s)ds

i(t) = f(vd(t))

Wherevc is the voltage on the capacitor andvd is the voltage
on the diodes. Remembering thati is the state variable, in
order to be integrated, the above system should be written
as:

e− iR− 1
C

∫ t

0

i(s)ds− f−1(i) = 0

But this is not possible becauseid = f(vd) is not invertible.
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But actually, this is not a real issue. All we have to do is
choosing another state variable. Takingvd, the system can
be written as:

e− f(vd)R− 1
C

∫ t

0

f(vd(s))ds− vd = 0 (1)

Now the equation has a valid analytic form.

3 Analysis of the solution

The aim of this section is to give an example of how we can
study if the solution of (1) exist and is unique. First of all
(1) should be rewritten in differential form:

v′d =
e′ − 1

C f(vd)
1 + f ′(vd)R

Then we have to require that the second term of this equa-
tion is continuous and satisfies the Lipschitz condition. To
have continuity, the denominator should satisfy

|1 + f ′(vd)R| > ε

For ”clipping” transfer functions like the one of diodes, it is
f ′(vd) ≥ 0 and so1 + f ′(vd)R ≥ 1.

Instead of Lipschitz condition, we could ask that

e′ − 1
C f(vd)

1 + f ′(vd)R
∈ C1

This is a stronger condition; if it is satisfied, then also Lips-
chitz condition is satisfied. It is easy to see that in clipping
devices, withf ′(vd) ≥ 0, the above condition is true if and
only if f ∈ C1.

Considering that in real applicationsf is not defined an-
alytically, but is often a regular function interpolating some
measurement point, askingf ∈ C1 does not limit the valid-
ity of this technique.

4 The numerical discretization

Now we are ready to study a numerical technique to solve
(1). Let’s consider a discretization step ofh, such that

tk = kh

We want to find a sequence{yk} that approximates the real
value ofvd in the grid points:

yk ' vd(tk)

Starting from equation (1), we have to give a numerical
approximation of the integral. A common choice in the au-
dio applications is the trapezoidal rule, that corresponds to

the bilinear transform method. One of its main advantages
is that it is a one step method but it has quadratic order of
convergence. The discrete equation is:

ek−ek−1−yk+yk−1 = (
h

2C
+R)f(yk)+(

h

2C
−R)f(yk−1)

And, after rearranging the terms, the equation becomes:

−Af(yk)−K = yk (2)

Where

A =
h

2C
+ R

K = ek−1 − ek + (
h

2C
−R)f(yk−1)− yk−1

We can easily see that there exist one and only one so-
lution of (2). Rewriting it as

f(yk) = −A−1(yk + K)

we note that the solution is the intersection of the graph of
y = f(x) and the liney = −A−1(x + K), as shown in the
picture below.

Figure 3

Because the lines have a negative slew and the nonlinear
transfer function is monotone with a positive slew, there is
only one point of intersection, and so the solution is unique.

A solution of (2) can be easily found with standard nu-
merical methods, like Newton-Raphson or bisection algo-
rithm, which globally converge thanks to the regularity and
monotonicity of the function. A little trick to improve the
speed of convergence is to use a ”hot start” at each itera-
tion; this consists in initializing the iterative methods using
the solution at the previous discretization point, which is a
first order approximation of the new solution.



5 Comparison with a simplified method

In the previous sections we studied a very simple example
like a model; but in spite of its simplicity, the analysis and
the computational models are not elementary. Generally, in
practical applications like the signal processing in the mu-
sical field, simplified models are used instead of the one
presented here. Giving up the possibility to obtain an exact
simulation of the circuit, they are computationally cheaper
and easier to implement. For example, the circuit consid-
ered in the previous sections can be approximated by a one
pole high pass filter (with cutoff frequency at12πRC ) fol-
lowed by a nonlinear waveshaper with the transfer function
of the diodes. This solution is commonly used into the DSP
models in tube preamplifier simulators. So we may ask if
such an approximation can give sufficiently good accuracy.

We are going to present the results of a numerical ex-
periment that can be quite illuminating. The experiment
is based on the same circuit of the previous sections, tak-
ing R = 10KΩ, C = 22nF and the generatore as a sine
source with a frequency of 60Hz. For this circuit both the
exact and the simplified models have been built. In the first
simulation, the amplitude of the source signal was 20V peak
to peak, so the signal was heavily clipped by the diodes. In
the second run, the same circuit has been simulated using an
input voltage of 0.5V peak to peak. Here are the graphics
with the results:

In the first case (figure 4) the source signal is heavily
clipped; this means that the diodes are conducing in about
all the period of the signal, current is flowing through the
capacitor and so the RC network is behaving like the HPF
of the approximated model. But in the second case (figure
5), diodes are not conducing, so in the real case no current
is flowing through the RC network and no filtering effect
is performed. This is a big difference between the approxi-
mated model.
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Figure 4: Simulation of the circuit with an input volt-

age of 20V peak to peak. The solid line is the exact simula-
tion. The dotted line is the simulation with the approximated
model.
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Figure 5: Simulation of the circuit with an input volt-
age of 0.5V peak to peak. The solid line is the exact simula-
tion. The dotted line is the simulation with the approximated
model.

6 Conclusions

This paper would like to introduce, from an operative point
of view, some aspects of the simulation of circuits with
”switching” components. It would not to be a complete the-
oretic treatment, but it would like to give a complete exam-
ple of how to build models when switching components are
present, how to analyze them and give a numerical method
for the simulation. This treatment can be applied without
relevant changes to all the saturating components, like tran-
sistor, tubes and saturating magnetic cores, which are al-
most all the nonlinearities found in audio applications.

7 Acknowledgment

we would like to thank Gianpaolo Borin who inspired this
work and Pierre Richemond for his revision.

References

[1] John, H. Mathews, ”Numerical Methods for Mathe-
matics, Sience, and Engeneering”, Prentice Hall, 1992

[2] Morgan Jones, ”Valve Amplifiers”, Newnes, Reed Ed-
ucational and Professional Publishing, 1995



[3] Charles Rydel, ”Simulation of Electron Tubes with
Spice” in Preprint no.3965 of AES 98th Convention
1995

[4] G. Borin, G. De Poli, D. Rocchesso, ”Elimination of
free delay loops in discrete-time models of nonlinear
acoustic systems”, IEEE Trans. on Speech and Audio
Processing, vol 8, issue 5, September 2000, pp.597-
605

[5] T. Serafini, ”Metodi per la simulazione numerica
di sistemi dinamici non lineari, con applicazioni al
campo degli strumenti musicali elettronici”, Univer-
sita’ di Modena e Reggio Emilia, Italy, 2001 (MS The-
sis)

[6] Foti Frank, ”Aliasing Distortion in Digital Dynamics
Processing, the Cause, Effect, and Method for Mea-
suring It: The Story of ’Digital Grunge!’ ”, in Preprint
no.4971 of AES 106th Convention 1999


